MathVantage	Algebra II - Exam 2		Exam Number: 041		
	PART 1:	QUESTIONS			
Name:	Age	: Id:	Course:		
Algebra II - Exam 2		Lesson: 4-6			
Instructions:		Exam Strateg	ies to get the best performance:		
• Please begin by printing your Name, your Age,		• Spend 5 minutes reading your exam. Use this time			
your Student Id, and your Course Name in the box		to classify each Question in (E) Easy, (M) Medium,			
above and in the box on the solution sheet.		and (D) Difficult.			
 You have 90 minutes (class period) for this exam. You can not use any calculator, computer, 		• Be confident by solving the easy questions first then the medium questions.			
cellphone, or other assistance device on th	is exam.	• Be sure to check each solution. In average, you			
However, you can set our flag to ask permission to		only need 30 seconds to test it. (Use good sense).			
consult your own one two-sided-sheet not	es at any				
point during the exam (You can write concepts,		• Don't waste too much time on a question even if			
formulas, properties, and procedures, but questions		you know how to solve it. Instead, skip the			
and their solutions from books or previous exams		question and put a circle around the problem			
are not allowed in your notes).		number to work	c on it later. In average, the easy and		
		medium question	ons take up half of the exam time.		
• Each multiple-choice question is worth 5 p	points				
	0,4, 7	0.1. (1. 11			

- and each extra essay-question is worth from 0 to 5 points. (Even a simple related formula can worth some points).
- Set up your flag if you have a question.
- Relax and use strategies to improve your performance.

- Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.
- Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

1. A quadratic function is:

I. $xy = c, c \neq 0$

II. $y = a(x - x_1)(x - x_2)$, where $a \neq 0$ and x_1, x_2 are the roots.

III.
$$y = ax^2 + bx + c, a \neq 0$$

- a) Only I is correct.
- b) Only II is correct.
- c) Only III is correct.
- d) I, II, and III are correct.
- e) None of the above.

Solution: e

By definition, a quadratic function is any function in the form $y = ax^2 + bx + c$, $a \neq 0$.

The quadratic function also can be written by the following factor formula:

 $y = a(x - x_1)(x - x_2)$, where $a \neq 0$ and x_1, x_2 are the roots.

2. If x_1 and x_2 are the roots of a quadratic function $y = ax^2 + bx + c$, $a \neq 0$ then:

I. $x_1 \cdot x_2 = \frac{c}{a}$

II. $x_1 + x_2 = \frac{b}{a}$

III.
$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$,

where $\Delta = b^2 + 4ac$.

- a) Only I is correct.
- b) Only III is correct.
- c) Only III is correct.
- d) I, II, and III are correct.
- e) None of the above.

Solution: a

I. True.

The product of the roots is $x_1 \cdot x_2 = \frac{c}{a}$.

II. False.

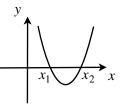
The sum of the roots is $x_1 + x_2 = -\frac{b}{a}$.

III. False.

The roots x_1 and x_2 of a quadratic function are calculated by the following quadratic formula:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
, where $\Delta = b^2 - 4ac$.

3. Given the graph of the quadratic function $y = ax^2 + bx + c$, $a \neq 0$ such that x_1 and x_2 are its roots:



Then:

a) a > 0 and $\Delta > 0$ b) a > 0 and $\Delta = 0$ c) a > 0 and $\Delta < 0$ d) a < 0 and $\Delta > 0$ e) a < 0 and $\Delta > 0$

Solution: a

The concavity is upward then a > 0. There are two distinct roots x_1 and x_2 then $\Delta > 0$.

4. Let $y = ax^2 + bx + c$, $a \neq 0$ be a quadratic function with vertex $V(x_y, y_y)$.

I. $x_v = \frac{x_1 + x_2}{2}$ and $y_v = a(x_v^2) + b(x_v) + c$, where x_1 and x_2 are the roots.

II.
$$x_v = \frac{-b}{2a}$$
 and $y_v = \frac{\Delta}{4a}$

III.
$$x_v = \frac{-b}{2a}$$
 and $y_v = \frac{-\Delta}{4a}$

- a) Only I is correct.
- b) Only II is correct.
- c) Only III is correct.
- d) Only I and II are correct.
- e) None of the above.

Solution: e

The vertex of the parabola is $V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$. By symmetry, $x_v = \frac{x_1 + x_2}{2}$ and

 $y_v = a(x_v^2) + b(x_v) + c$, where x_1 and x_2 are the roots.

Thus, only I and III are correct.

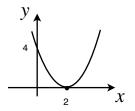
5. The value of *m* such that the quadratic function $y = x^2 - 4x + m$ has two distinct roots is:

- a) *m* < 4
- b) *m* < 5
- c) m < 8
- d) *m* < 16
- e) None of the above.

Solution: a

The quadratic function has two distinct roots if $\Delta > 0$. $y = x^2 - 4x + m$ (a = 1, b = -4, and c = m) $\Delta = b^2 - 4ac$ $\Delta = (-4)^2 - 4(1)(m) > 0$ 16 - 4m > 0 4m < 16m < 4.

6. The quadratic function of the following graph is:



- a) $y = x^2 6x + 8$
- b) $y = x^2 4$ c) $y = -x^2 + 2x + 3$

c)
$$y = -x + 2x + 3$$

- d) $y = x^2 x 12$
- e) None of the above.

Solution: e

Let $x_1 = 2$ and $x_2 = 2$ be the roots of y. Then:

$$y = a(x - x_1)(x - x_2) \Rightarrow y = a(x - 2)(x - 2)$$

Since A(0,4) belong to the graph, we have:

$$4 = a(0-2)(0-2) \Rightarrow 4 = 4a \Rightarrow a = 1.$$

Then, $y = a(x - 2)(x - 2) \Rightarrow y = 1(x - 2)(x - 2)$ Thus, $y = x^2 - 4x + 4$.

Note: By symmetry, $x_v = \frac{x_1 + x_2}{2} \Rightarrow x_v = \frac{2+2}{2} \Rightarrow$ $x_v = 2$ $y_v = x_v^2 - 4x_v + 4 \Rightarrow y_v = (2)^2 - 4(2) + 4 \Rightarrow y_v = 0$

Thus, the vertex is V(2,0).

7. Find the minimum value of the following quadratic function:

$$y = x^2 - 6x + 8$$

a) -1 b) 0 c) 1 d) 2 e) None of the Above.

Solution: a

$$y = x^{2} - 6x + 8$$

$$x_{v} = \frac{-b}{2a} \Rightarrow x_{v} = \frac{-(-6)}{2(1)} \Rightarrow x_{v} = 3$$

$$y_{v} = \frac{-\Delta}{4a} \Rightarrow y_{v} = \frac{-(b^{2} - 4ac)}{4a} \Rightarrow$$

$$y_{v} = \frac{-[(-6)^{2} - 4(1)(8)]}{4(1)} \Rightarrow y_{v} = -1$$

$$y$$

$$y_{v} = \frac{-[(-6)^{2} - 4(1)(8)]}{4(1)} \Rightarrow y_{v} = -1$$

The minimum value of the quadratic function is -1.

8. The perimeter of a rectangle is 24 ft. The maximum area of the rectangle is:

- a) 4 ft^2
- b) 16 ft^2
- c) 36 ft^2
- d) 625 ft^2
- e) None of the above.

Solution: c х У

 $p = 2x + 2y = 24 \Rightarrow x + y = 12 \Rightarrow y = 12 - x$ $A = xy \Rightarrow A = x(12 - x) \Rightarrow A = -x^{2} + 12x$

Note: Since a < 0 then we have a maximum.

$$x_{v} = \frac{-b}{2a} \Rightarrow x_{v} = \frac{-(12)}{2(-1)} \Rightarrow x_{v} = 6$$
$$y_{v} = \frac{-\Delta}{4a} \Rightarrow y_{v} = \frac{-(b^{2} - 4ac)}{4a} \Rightarrow$$
$$y_{v} = \frac{-[(12)^{2} - 4(-1)(0)]}{4(-1)} \Rightarrow y_{v} = 36$$

Thus, the maximum area is 36 ft^2 .

9. Find the formula for the revenue function if the pricedemand function of a product is p = 100 - 2x, where x is the number of items sold and the price is in dollars. How many items should be sold in order to maximize the revenue? What is the maximum revenue?

- a) 2 items and 40
- b) 4 items and \$32
- c) 9 items and \$243
- d) 20 items and \$800
- e) None of the above.

Solution: e

p = 100 - 2x; where x is the number of items sold.

$$R(x) = p \cdot x \Rightarrow R(x) = (100 - 2x)x \Rightarrow R(x) = -2x^2 + 100x$$

$$x_v = \frac{-b}{2a} \Rightarrow x_v = \frac{-(100)}{2(-2)} \Rightarrow x_v = 25$$
 items.

$$y_{v} = \frac{-\Delta}{4a} \Rightarrow y_{v} = \frac{-(b^{2} - 4ac)}{4a} \Rightarrow$$
$$y_{v} = \frac{-[(100)^{2} - 4(-2)(0)]}{4(-2)} \Rightarrow y_{v} = \$1250.$$

4(-2)

10. Given:

I. If p(c) = 0 then c is the zero or root of p(x).

II. A polynomial function is any function in the form:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0; a_n \neq 0.$$

III. When the polynomial p(x) is divided by x - a, the remainder is p(a).

Then:

- a) I, II, and III are incorrect.
- b) I, II, and III are correct.
- c) Only I and II are correct.
- d) Only II and III are correct.
- e) None of the above.

Solution: b

- I. True. Definition of zero or root of a polynomial.
- II. True. Definition of polynomial.
- III. True. The remainder theorem.
- 11. Given:
- I. $p(x) = 2x^5 + 3x 2$ II. $p(x) = x^{16} - x^{-1}$ III. p(x) = -x + 1

Then:

- a) Only I and II are polynomials.
- b) Only I and III are polynomials.
- c) Only II and III are polynomials.
- d) I, II, and III are polynomials.
- e) None of the above.

Solution: b

A polynomial function has the form:

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$, where

 $a_n, a_{n-1}, \ldots, a_1, a_0 \in \mathbb{R}$ and *n* is a nonnegative integer.

Thus, only I and III are polynomials.

x + 2

12. Given
$$p(x) = -x^2 + x$$
 and $d(x) = x + 1$, then:
I. $p(x) - d(x) = -x^2 - 1$
II. $p(x) \cdot d(x) = -x^3 + x$
III. In the division $\frac{p(x)}{d(x)}$, the quotient is $q(x) = -x$
and the remainder is $r(x) = 2$.
a) Only II and III are correct.
b) Only I and III are correct.
c) Only I and III are correct.
d) I, II, and III are correct.
e) None of the above.
Solution: c
I. True. $p(x) - d(x) = -x^2 + x - (x + 1)$
 $= -x^2 + x - x - 1$
 $= -x^2 - 1$
II. True. $p(x) \cdot d(x) = (-x^2 + x)(x + 1)$
 $= -x^3 - x^2 + x^2 + x$
 $= -x^3 + x$
III. False. $\frac{p(x)}{d(x)} = ?$
 $x + 1 \overline{\int -x^2 + x}$

 $\begin{array}{r} -x^2 + x \\ 2x \\ 2x + 2 \\ -2 \end{array}$

Then, the quotient is q(x) = -x + 2 and the remainder is r(x) = -2.

Thus, only I and II are correct.

13. The remainder of $p(x) = -x^3 - x^2 + 3$ by d(x) = -x - 1 is:

a) -1 b) 2 c) 3 d) 4 e) None of the above.

Solution: c

The remainder theorem: Let p(x) be any polynomial of degree greater than or equal to 1 and let *a* be any real number. If p(x) is divided by the polynomial (x - a), then the remainder is p(a). Then,

a = -1 and the remainder is r = p(-1). $r = -(-1)^3 - (-1)^2 + 3$ r = 3.

14. Let x_1, x_2 , and x_3 be the roots of $p(x) = x^3 - 6x^2 + 11x - 6$. Given $x_1 = 1$ then $k = (x_2)^2 + (x_3)^2$ is:

- a) k = 5
- b) k = 10
- c) k = 13
- d) k = 25
- e) None of the above.

Solution: c

$$x_1 = 1$$

By the synthetic method:

$$\frac{1}{1} \quad \frac{1}{-6} \quad \frac{1}{-6} \quad \frac{-6}{-6}$$

$$x^{2} - 5x + 6 = 0$$

$$S = \frac{-b}{a} \Rightarrow S = \frac{-(-5)}{1} \Rightarrow S = 5$$

$$P = \frac{c}{a} \Rightarrow P = \frac{6}{1} \Rightarrow P = 6$$

$$\frac{+1 + 6}{(+2 + 3)}$$

$$x_{2} = 2 \text{ and } x_{3} = 3.$$

Thus, $k = (x_2)^2 + (x_3)^2 = 2^2 + 3^2 = 13$.

15. Let q(x) and r(x) be the quotient and remainder by the division of $p(x) = x^3 - 1$ by $d(x) = x^2 - 2$. Then q(x) + r(x) is:

- a) 2x 1b) $x^2 - 1$ c) $-x^2 + 1$ d) $x^2 - x + 1$
- e) None of the above.

Solution: a

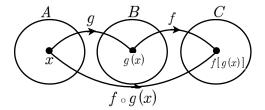
$$\begin{array}{r} x \\
 x^2 - 1 \overline{\smash{\big)} x^3 + 0x^2 + 0x + 1} \\
 \underline{x^3 - x} \\
 x - 1
 \end{array}$$

Using the long method for polynomials, we have: Then, q(x) = x and r(x) = x - 1. Thus, q(x) + r(x) = (x) + (x - 1) = 2x - 1.

16. Let $g : A \to B$ and $f : A \to B$ be functions. The composition of function fog(x) = f[g(x)] exists if: Notation: Im: Image and D: Domain.

- a) $Im_g = Im_f$
- b) $D_g = D_f$
- c) $Im_f = D_g$
- d) $Im_g = D_f$
- e) None of the above.

Solution: d



The composition of function $f \circ g(x) = f[g(x)]$ exists if $Im_g = D_{f}$.

17. Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = 6x + 4 and g(x) = 3x - 1. Then f[g(1)] is:

a) 1 b) 3 c) 14 d) 16 e) None of the above.

Solution: d

Let f(x) = 6x + 4 and g(x) = 3x - 1. Then: f[g(x)] = 6g(x) + 4 = 6(3x - 1) + 4 = 18x - 2Thus, f[g(1)] = 18(1) - 2 = 16.

18. Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = 5x - 1 and f[g(x)] = 2 - 3x. Then:

a)
$$g(x) = \frac{x}{2} + 1$$

b) $g(x) = 2x - 8$
c) $g(x) = \frac{3x}{4} + \frac{3}{4}$
d) $g(x) = -\frac{3x}{5} + \frac{3}{5}$

e) None of the above.

Solution: d

Since f(x) = 5x - 1 then:

$$f[g(x)] = 5[g(x)] - 1$$

2 - 3x = 5g(x) - 1
5g(x) = -3x + 3.
g(x) = -\frac{3x}{5} + \frac{3}{5}.

19. Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = x + 2 and g[f(x)] = x - 2. Then:

- a) g(x) = 2x + 7
- b) g(x) = -3x + 2
- c) g(x) = -2x + 13
- d) g(x) = x 4
- e) None of the above.

Solution: d

 $f(x) = x + 2 \Rightarrow x = f(x) - 2$ g[f(x)] = x - 2 g[f(x)] = [f(x) - 2]x - 2 g[f(x)] = f(x) - 2 - 2 g[f(x)] = f(x) - 4Thus, g(x) = x - 4.

20. If
$$g(x) = \sqrt[9]{x-3}$$
 and $h(x) = x^9 + 1$. Then:

a) h[g(x)] = xb) h[g(x)] = x + 5c) h[g(x)] = x - 1d) h[g(x)] = x - 2e) None of the above.

Solution:d

 $h(x) = x^{9} + 1$ $h[g(x)] = [g(x)]^{9} + 1$ $h[g(x)] = [\sqrt[9]{x-3}]^{9} + 1$ h[g(x)] = x - 3 + 1h[g(x)] = x - 2. Algebra II - Exam 2

Exam Number: 041

Consulting

PART 2: SOLUTIONS

Name:__

Age:____

Course:

Multiple-Choice Answers

Questions	Α	в	с	D	Е
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Let this section in blank

	Points	Max
Multiple Choice		100
Extra Points		25
Consulting		10
Age Points		25
Total Performance		160
Grade		Α

Extra Questions

Id:

21. Graph $y = x^2 - 4x$.

Solution:

$$y = x^2 - 4x$$

Find the roots: $x^2 - 4x = 0$ x(x - 4) = 0 $x_1 = 0$ or $x_2 = 4$

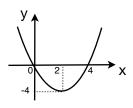
$$x_{v} = \frac{x_{1} + x_{2}}{2} \Rightarrow x_{v} = \frac{0 + 4}{2} \Rightarrow x_{v} = 2$$

$$y_{v} = x_{v}^{2} - 4x_{v}$$

$$y_{v} = (2)^{2} - 4(2)$$

$$y_{v} = -4, \text{ then } V(2, -4).$$

Thus, the graph is:



22. Calculate *m* such that the quadratic function $y = 4x^2 + 4x + m^2$ has two distinct real roots:

Solution:

$$y = 4x^2 + 4x + m^2$$
 ($a = 4, b = 4, and c = m^2$)

If we have two distinct real roots then $\Delta > 0$.

$$\begin{split} \Delta &= b^2 - 4ac \\ \Delta &= (4)^2 - 4(4)(m^2) \\ \Delta &= 16(1-m^2) > 0 \\ (1-m^2) > 0 \\ (1+m)(1-m) > 0 \end{split}$$

Thus, $S = \{m \in \mathbb{R} \mid -1 < m < 1\}.$

23. Given the equation 3x + y = 36, find x and y such that the product P = xy be a maximum.

Solution: $x_{max} = 4$ and $y_{max} = 12$. $3x + y = 36 \Rightarrow y = 36 - 3x$ $P = xy \Rightarrow P = x(36 - 3x)$ $P = -3x^2 + 36x (a = -3, b = 36, and c = 0)$ Note: $a < 0 \Rightarrow$ Downward parabola \Rightarrow Maximum. $x_{max} = \frac{-b}{2a} \Rightarrow x_{max} = \frac{-36}{2(-3)} \Rightarrow x_{max} = 6$ $y_{max} = 36 - 3(x_{max}) \Rightarrow y_{max} = 36 - 3(6) \Rightarrow$ $y_{max} = 18$.

24. Given $f(x) = \frac{8-x}{\sqrt[3]{x-8}}$. Find the domain of f(x).

Solution: $D_f = \{x \in \mathbb{R} \mid x \neq 8\}.$

 $x - 8 \neq 0 \Rightarrow x \neq 8$

Thus, $D_f = \{x \in \mathbb{R} \mid x \neq 8\}.$

25. Show me that Derivatives are easy. Let f(x) be a polynomial such that $f(x) = x^n$. Then the derivative of f(x) called f'(x) is $f'(x) = n x^{n-1}$. Find the derivative of $f(x) = x^7$.

Solution: $f'(x) = 7x^6$

$$f(x) = x^n \Rightarrow f'(x) = n x^{n-1}$$
. For $n = 7$, we have:

$$f(x) = x^7$$

Solution: $f'(x) = 5x^4$